
StrucOpt manuscript No.
(will be inserted by the editor)

Multilevel parallel optimization using
massively parallel structural dynamics?

M.S. Eldred, A.A. Giunta, and B.G. van Bloemen Waanders

Abstract A large-scale structural optimization of
an electronics package has been completed using
a massively parallel structural dynamics code. The
optimization goals were to maximize safety margins
for stress and acceleration resulting from transient
impulse loads, while remaining within strict mass
limits. The optimization process utilized nongradi-
ent, gradient, and approximate optimization meth-
ods in succession to modify shell thickness and foam
density values within the electronics package. This
combination of optimization methods was successful
in improving the performance from an infeasible de-
sign which violated response allowables by a factor
of two to a completely feasible design with positive
design margins, while remaining within the mass
limits. In addition, a tradeoff curve of mass versus
safety margin was developed to facilitate the design
decision process. These studies employed the ASCI
Red supercomputer and utilized multiple levels of
parallelism on up to 2560 processors. In total, a se-
ries of calculations were performed on ASCI Red
in five days, where an equivalent calculation on a

Received: October XX, 2002

M.S. Eldred, A.A. Giunta, and B.G. van Bloemen
Waanders

Optimization and Uncertainty Estimation Department
Sandia National Laboratories
Albuquerque, NM 87185–0847, USA
e-mail: mseldre@sandia.gov, aagiunt@sandia.gov,

bartv@sandia.gov

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed-Martin Company,
for the United States Department of Energy under
Contract DE-AC04-94AL85000.

? Presented as paper 2001–1625 at the 42nd AIAA-
/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, Seattle, WA, April
16-19, 2001

single desktop computer would have taken greater
than 12 years to complete.

Key words parallel optimization, multilevel par-
allel computing, structural dynamics

1
Introduction

This report describes the design optimization of an
electronics package (EP) which is one component of
an atmospheric re-entry vehicle. The design study
was performed in the Spring of 2000 using massively
parallel, high-fidelity structural dynamics simula-
tions conducted on the Accelerated Strategic Com-
puting Initiative Option Red supercomputer (ASCI
Red) at Sandia National Laboratories.

During a five-day period, a block of up to 2560
processors on ASCI Red was employed to run up
to 10 concurrent structural dynamics simulations,
each employing 256 processors. Approximately 500
of these structural dynamics simulations were per-
formed, each of which involved a transient struc-
tural analysis for a 500,000 degree-of-freedom (DOF)
finite element model. The set of calculations per-
formed during this five-day period would have re-
quired more than twelve years of computation time
on a single desktop computer. While this use of
up to 2560 processors for twelve processor years is
on the extreme end of what is feasible with cur-
rent computational resources, it is anticipated that
such large-scale design optimization studies will be-
come more commonplace as massively parallel com-
puters and scalable parallel simulation codes be-
come production computing tools in the aerospace,
automotive, and biomedical fields. Indeed, recently
published work performed for aerospace (Biros and

2

Ghattas (2000)) and automotive applications (Yang
et al. (2000); Sobieszczanski-Sobieski et al. (2001))
demonstrates that parallel computing is becoming
a standard tool in the vehicle design process. The
maxim of Computerized Parkinson’s Law (Thim-
bleby (1993)) states that simulation complexity tends
to increase to fill the available resources, and Venkatara-
man and Haftka (2002) suggests that analysis com-
plexity and computing power have historically in-
creased in direct proportion due to practical require-
ments on analysis turnaround time. The authors
submit that this increasing appetite for higher fi-
delity models naturally leads to massively parallel
simulation and multilevel parallel computing, the
subjects of this report.

Optimization problems of this complexity and
computational expense pose many technical chal-
lenges. For good computational efficiency, the struc-
tural dynamics and optimization codes must be scal-
able to a large numbers of processors (order 102 −
104). For the structural dynamics software, this en-
tails the use of specific numerical techniques (e.g., it-
erative linear solvers, cache-optimized BLAS (Heath
(1997))) that exploit both the structure of the fi-
nite element model and the hardware configuration
of the parallel computer. For the optimization soft-
ware, parallel scheduling of simulations must also
exploit the hardware configuration of the parallel
computer and should be robust with respect to het-
erogeneities in the scheduled jobs. In addition, the
optimization software should be fault-tolerant with
respect to simulation and hardware failures and should
be robust to nonsmooth response variations gener-
ated from the simulations.

This paper provides the details of a production
design effort and, as a result, has an application
emphasis. The intent is to investigate optimization
tools for a large-scale engineering application, to
convey lessons learned, and to provide verification
of the multilevel parallel computing techniques de-
scribed in Eldred et al. (2000). Over the course of
the study, nongradient-based, gradient-based, and
approximate optimization methods were applied in
an iterative, evolving process in order to improve the
design of the EP. The results of this study are not
intended to compare methods, but rather to demon-
strate the utility of having a “toolbox” of sensitiv-
ity analysis and optimization algorithms from which
one can tailor the optimization procedures as more
is learned about the features of a particular appli-
cation.

Sections 2-5 provide background information on
the electronics package model, the Salinas struc-
tural dynamics software, the DAKOTA optimiza-

tion toolkit, and the ASCI Red supercomputer, re-
spectively. Section 6 describes the formulations, meth-
ods, and results in the EP design optimization prob-
lem, and Section 7 provides concluding remarks.

2
Electronics Package Model

The motivation for the optimization study was to
help designers improve the structural integrity of a
new EP structural design concept. Since this EP de-
sign was a refurbishment for the re-entry vehicle, it
provided the opportunity to incorporate several new
components into the existing package. However, an
important requirement was to avoid changing the
flight characteristics of the re-entry vehicle, so a re-
striction of no more than 10% deviation from the
nominal EP mass was imposed. In order to add func-
tionality but maintain mass, the EP design concept
replaced some metallic support structure with rigid
support foam. Thus, the design problem is a chal-
lenging one in that an EP design concept with less
structural support must still survive high stresses
and accelerations from severe re-entry vehicle struc-
tural loading conditions. A solid model of the EP
design concept is shown in Figure 1.

Over time, the level of fidelity in structural dy-
namics analysis has increased significantly (Figure
2) as a result of more advanced computers and,
most recently, the availability of a massively parallel
structural dynamics code. This has allowed for the
inclusion of more geometric detail in the computa-
tional models, which results in more geometrically
accurate and predictive models, more numerically
converged finite element results, and a reduction in
the need for analysts to perform ad hoc model sim-
plifications.

In this study, the EP geometry was discretized
using a finite element model having 500,000 degrees
of freedom (DOF). This model captures most of the
design features of the EP and provides sufficient de-
tail for the optimization study. Using 256 processors
on ASCI Red, a single transient structural analy-
sis of this model required approximately 40 min-
utes. While larger finite element models of the EP
have been created (with more than 10 million DOF),
these large models were considerably more expen-
sive and were deemed to be impractical for use in
this optimization study.

The 500,000 DOF finite element model was con-
structed using 55 geometric blocks where each block
corresponds to one or more subcomponents inside
the EP. Some of these blocks were structural shell

3

Fig. 1 A CAD model of the electronics package.

elements within the EP, while others were regions of
foam encapsulant used to cushion the EP subcom-
ponents.

The design variables for this study were the shell
thicknesses of a subset of the structural blocks, and
the density values for a subset of the foam encap-
sulant blocks. These design variables were selected
based on a modal sensitivity analysis, with those
blocks having the largest impact on the first 100
frequencies (greatest number of frequency deriva-
tives exceeding a threshold) being selected as design
parameters. While modal analysis is not a direct
component of this design problem, this parameter
screening approach is effective in identifying param-
eters which have global influence on model results,
and the results were consistent with the engineering
judgment of the EP analysts.

The computational simulation models the effect
of a transient impulse loading event on the EP. Struc-
tural response was computed over a time duration of
three milliseconds using 300 equal time steps. Re-
sponse quantities of interest were the mass of the
EP, along with the maximum stress and accelera-
tion values within each of the 55 blocks (maximum
over all DOF in a block for all time steps). These
mass, stress, and acceleration quantities were used

Fig. 2 Historical progression of the electronics package
finite element model fidelity.

in the objective function and constraints in order to
formulate the design problem.

For parallel processing, the EP finite element
model underwent domain decomposition to sepa-
rate it into 256 subdomains, i.e., one subdomain for
each processor. These subdomains were selected by
the domain decomposition software based on par-
allel load balancing considerations, and did not in
general correspond to any geometric subcomponent
boundaries in the EP.

3
Salinas: Massively Parallel Structural Dynamics

Salinas (Reese et al. (2000)) is a general-purpose,
finite element structural dynamics code designed to
be scalable on massively parallel computers. Cur-
rently, the code offers static analysis, direct implicit
transient analysis, eigenvalue analysis for comput-
ing modal response, and modal superposition-based
frequency response and transient response. In ad-
dition, semi-analytical derivatives of many response
quantities with respect to user-selected design pa-
rameters are available. Salinas also includes an ex-
tensive library of standard one-, two-, and three-
dimensional elements, nodal and element loading,
and multipoint constraints. Salinas solves systems of
equations using an iterative, multilevel solver, which
is specifically designed to exploit massively parallel
computers.

The linear solver used by Salinas was selected
based on the criteria of robustness, accuracy, scal-
ability and efficiency. Neither direct methods (e.g.,
sparse Gaussian elimination) nor general purpose
iterative solvers (e.g., the preconditioned conjugate
gradient method with over-lapping Schwartz pre-

4

Number of Processors

Millions of DOF
T

im
e

(s
ec

.)

0 200 400 600 800 1000

0 1 2 3 4 5

0

100

200

300

400

500

Solver Time
Total Time

Fig. 3 Scalability for FETI (solver time) and Salinas
(total time).

conditioner available in Aztec (Tuminaro et al. (1999)))
perform well for parallel solution of linear systems
obtained from the discretization of structures using
high order plate and shell elements. In this case, the
underlying partial differential equation is the fourth
order biharmonic equation for which special purpose
iterative solvers are necessary. This led to the selec-
tion of a multilevel domain decomposition method,
Finite Element Tearing and Interconnect (FETI)
(Farhat and Roux (1992)), that is the most success-
ful parallel solver known to the Salinas developers
for the linear systems applicable to structural me-
chanics. FETI is a mature solver, with some versions
used in commercial finite element packages such as
ANSYS (O’Neal and Murgie (2002)). As shown in
Figure 3, FETI is scalable in the sense that, as the
number of unknowns increases and the number of
unknowns per processor remains constant, the time
to solution does not increase. Further, FETI is ac-
curate in the sense that the convergence rate does
not deteriorate as the iterates converge.

An eigensolver was selected for Salinas based on
these same criteria: robustness, accuracy, scalabil-
ity and efficiency. Both a Lanczos-based solver (Day
(1998)) and subspace iteration were evaluated. The
Lanczos algorithm solves the minimal number of lin-
ear systems required to approximate a set of modes
to a given accuracy, and Lanczos-based methods are
significantly more efficient than subspace iteration.
PARPACK (Maschhoff and Sorensen (1996)) is a
scalable Lanczos-based solver that was selected be-
cause its memory usage is minimal, the software is

reliable, and the number of linear systems solved
per mode is nearly minimized.

4
DAKOTA: Multilevel Parallel Optimization

The DAKOTA (Design Analysis Kit for Optimiza-
tion and Terascale Applications) toolkit (Eldred et
al. (2002a,b,c)) is an open source software frame-
work that provides a flexible and extensible inter-
face between simulation codes and iterative systems
analysis methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based
methods; uncertainty quantification with sampling,
analytic reliability, and stochastic finite element meth-
ods; parameter estimation with nonlinear least squares
methods; and sensitivity/primary effects analysis with
design of experiments and parameter study capa-
bilities. These capabilities may be used on their
own or as components within advanced strategies
such as surrogate-based optimization, mixed inte-
ger nonlinear programming, or optimization under
uncertainty. DAKOTA provides generic simulation
interfacing facilities which allow the use of a va-
riety of engineering and physics simulation codes
as “function evaluations” within an iterative loop.
DAKOTA manages the complexities of its analy-
sis and optimization capabilities through the use of
object-oriented abstraction, class hierarchies, and
polymorphism (Stroustrup (1991)). The flexibility
of the framework allows for easy incorporation of
the latest external and internal algorithmic devel-
opments.

Parallelism is an essential component of the DA-
KOTA framework. Particular emphasis has been given
to simultaneously exploiting parallelism at a vari-
ety of levels in order of achieve near-linear scaling
on massively parallel computers. For example, DA-
KOTA can manage concurrent optimizations, each
with concurrent function evaluations, each with con-
current analyses that utilize multiple processors. El-
dred et al. (2000) provides guidance on how to se-
lect partitioning schemes and scheduling algorithms
within these levels in order to maximize overall par-
allel efficiency and to ensure robustness with respect
to heterogeneity (e.g., variability in simulation du-
ration). A common case is two levels of parallelism,
in which concurrent function evaluations each run
on multiple processors. In this study, DAKOTA em-
ployed two levels of parallelism by managing up to
10 concurrent Salinas invocations, each of which em-
ployed 256 compute nodes. Through this combina-
tion of coarse-grained and fine-grained parallel com-

5

puting, DAKOTA was able to effectively utilize up
to 2560 processors and achieve rapid turnaround on
this large-scale design study.

5

ASCI Red Supercomputer

For this optimization study, substantial computa-
tional resources were required. Within Sandia Na-
tional Laboratories, one of the primary production
computing platforms is the ASCI Red supercom-
puter (Mattson and Henry (1997); Tomkins (1996)).

5.1

Architecture

ASCI Red is a massively parallel, distributed mem-
ory, multiple input multiple data (MIMD) computer.
It has a peak performance of greater than three Ter-
aFLOPS (trillion floating point operations per sec-
ond). It is designed so that file input/output (I/O),
memory, disk capacity, and communication are scal-
able. Standard parallel programming libraries, such
as the Message Passing Interface (MPI) (Snir et al.
(1996)), make it relatively straightforward to port
parallel applications to this system.

The processors in the ASCI Red supercomputer
are organized into four partitions: compute, service,
system, and I/O. Of these, the service partition pro-
vides support for interactive users, application de-
velopment, and system administration. This parti-
tion runs a full UNIX operating system. The par-
allel applications execute in the compute partition,
which contains nodes optimized for floating point
performance and for high bandwidth communica-
tion. This partition executes the Cougar operating
system (Greenberg et al. (1997)) which is a lightweight
kernel intended to leave as much node memory as
possible available for the application. Each com-
pute node consists of two 333 MHz Intel Pentium-II
Xeon Core processors with 256 MBytes of RAM. In
this study, only one processor per node was used
for computation while the other processor was used
for communication, although a new “virtual node”
capability allows the use of both node processors
for computation. The system hardware and perfor-
mance attributes of ASCI Red are summarized in
Table 1.

Table 1 Hardware and performance characteristics of
the ASCI Red supercomputer.

Compute Nodes 4510
Service Nodes 52

System and I/O Nodes 87
Total Processors 9298

System RAM (TeraBytes) 1.2
Compute Node Peak Performance 666

(MegaFLOPS)
System Peak Performance 3.1

(TeraFLOPS)
System Linpack Performance 2.4

(TeraFLOPS)

5.2
Salinas/DAKOTA Implementation on ASCI Red

DAKOTA can be interfaced with simulation codes
in a variety of ways depending on the level of in-
trusiveness one is willing to support, on the de-
sired performance, and on the underlying compute
architecture. The simplest approach is the “black-
box” method, which employs process creation facil-
ities such as C system calls (Kernighan and Ritchie
(1988)) or UNIX forks (Glass (1993)). This is the
least intrusive method in that the simulation can
be used as is, with no modifications. It is also the
least efficient method since it incurs the overhead of
creating separate processes for the simulations. In
practice, this overhead is usually small relative to
the expense of the simulations. The most computa-
tionally efficient interface technique is the “direct”
method in which the simulation code (e.g., Salinas)
is linked into DAKOTA as a callable function. While
efficient, the direct interface is intrusive to the simu-
lation code since the code must be transformed to a
subroutine and, in the parallel case, made modular
on an MPI communicator. In addition, it compli-
cates the use of pre- and post-processing tools (e.g.,
mesh generation, domain decomposition and recon-
stitution) since direct interfaces to these tools are
required as well.

These two interfacing approaches have additional
distinctions when applied on massively parallel com-
puters which employ a service/compute node de-
sign. In particular, the black-box approach involves
the execution of DAKOTA on the service nodes
where it creates concurrent simulation driver pro-
cesses on the service nodes. Each of these simulation
drivers then launches a parallel simulation into the
compute node partition. DAKOTA must then con-
tinuously monitor for the completion of these simu-
lations, again utilizing service node resources. The
direct approach, on the other hand, involves the ex-

6

ecution of a combined executable on the compute
nodes only. The management of concurrent multi-
processor simulations is performed internally using
MPI communicators. Consequently, the direct ap-
proach places fewer demands on the service parti-
tion than the black-box approach.

For this study, a black-box approach using sys-
tem calls was selected, which allowed the use of
a separate, unmodified Salinas executable. In this
case, DAKOTA was run on the service node par-
tition where it coordinated concurrent Salinas jobs
on the compute partition. This is depicted in Fig-
ure 4. A key component of conducting a study of
this type in a shared resource environment (i.e., in
the presence of NQS/PBS job queues) was the abil-
ity to make a single request for a large block of
processors (e.g., 2560 processors) and then sched-
ule sets of smaller parallel jobs (e.g., 10 concurrent
jobs of 256 processors each) within partitions of the
larger allocation. This avoided the repeated queue
delays that would otherwise have occurred if the
smaller jobs were queued separately. In addition,
pre- and post-processing steps were important com-
ponents for allowing communication between DA-
KOTA and Salinas. Values of the design variables
were written by DAKOTA to a file and then incor-
porated into the Salinas input file using a Sandia-
developed file parsing program. The output of Sali-
nas was post-processed to provide the mass and
safety margin data values needed for the optimiza-
tion studies. While the results from each domain-
decomposed, parallel simulation could be gathered
into a single file for post-processing, it was more ex-
pedient to evaluate safety margins across separate
subdomain databases. This entire cycle was auto-
mated using a single UNIX driver script that was
invoked by DAKOTA. While DAKOTA was exe-
cuted on a single service node and each of the sys-
tem calls to concurrent Salinas drivers were initi-
ated from this single service node, a resident load
spreading utility relocated Salinas monitoring pro-
cesses among the entire service partition in order to
distribute the application load.

5.3
Computational Issues

Optimization studies which create multiple simu-
lation processes impose different loads on super-
computers in comparison to single parallel executa-
bles. In particular, the invocation, pre- and post-
processing, and monitoring of multiple concurrent
jobs put a much higher load on the service nodes

I n p u tI n p u t

I n p u tI n p u t

S e r v i c e N o d e s

C o m p u t e N o d e s

S t o r a g e D i s k s

A S C I R e d
D A K O T A

S a l i n a s

Fig. 4 A depiction of the DAKOTA/Salinas implemen-
tation on ASCI Red.

than the execution of single jobs. The service parti-
tion on ASCI Red was designed to manage basic co-
ordination tasks and was not intended for significant
floating point operations or heavy I/O demands.
Although the individual processors are capable of
computations, there were simply not enough ser-
vice nodes to sustain significant activities. In the
case of this design study, the service nodes were
responsible for managing the optimization process
(running the optimizer and querying for job com-
pletion) as well as managing concurrent simulation
driver processes and parallel simulation monitoring
processes. At certain points during the studies, Sali-
nas jobs would hang on initiation. In the worst of
these incidents, a service node became overloaded
and crashed, which necessitated a full reboot of the
machine.

The observed reliability problems stemmed more
from the closely synchronized nature of concurrent
simulation invocation than from the total amount of
work being performed. In this study, it was found
that staggering the Salinas job initiations by a few
seconds allowed the load spreading utility sufficient
time to spread the Salinas monitoring processes among
the service nodes, which resulted in improved reli-
ability. In addition, feedback to the ASCI Red sys-
tem administration team since the conclusion of this
study has resulted in several service partition reli-
ability enhancements, including an increase in the
number of service nodes from 16 (at the time of the
study) to 52 (current number shown in Table 1).

7

6
Optimization Results

The objective of the optimization study was to sat-
isfy safety margin requirements while remaining within
a strict mass budget. These goals were achieved
through an iterative, evolving process in which a to-
tal of four different optimization algorithms and two
different optimization problem formulations were em-
ployed. Changes in method selection and problem
formulation occurred as additional features of the
problem became apparent. Comparisons between meth-
ods were not attempted as each study built on re-
sults obtained from previous studies. This approach
is not uncommon in a results-driven application con-
text for which problem characteristics are not known
a priori. Having a toolbox of approaches available,
as in DAKOTA, facilitates this type of evolving in-
vestigation.

6.1
Phase 1: Nongradient and Gradient-Based
Optimization

The initial phase of the optimization study focused
on the application of traditional nongradient and
gradient-based optimization algorithms. These al-
gorithms were provided in the SGOPT, NPSOL,
and DOT optimization libraries available within the
DAKOTA toolkit.

6.1.1
Coordinate Pattern Search Algorithm

The initial optimization formulation for the EP re-
design was to maximize the minimum safety mar-
gin (SM), subject to constraints on the EP mass.
A safety margin function was defined for each of
the 55 blocks in the finite element model using the
maximum response over all degrees of freedom in
the block and over all 300 time steps in the transient
simulation. Four shell thickness parameters and one
foam density parameter from the EP model were se-
lected as design variables for this optimization case.
These five parameters were the most sensitive based
on the sensitivity analysis study described in Sec-
tion 2.

This optimization problem was formulated in
DAKOTA as follows:

maximize SMmin

subject to 0.9Mnom ≤ M ≤ 1.1Mnom,
xL ≤ x ≤ xU,

(1)

where SMmin is the minimum over all 55 safety
margin values, M is the current mass of the EP,
Mnom is the nominal mass of the EP, and x is the
vector of 5 design variables with lower and upper
bounds xL and xU, respectively. The safety margin
values were computed for the EP internal compo-
nents based on either a stress allowable value or
an acceleration allowable value. The safety margins
based on stress values were computed as

SMi =
σa

i

σi
− 1, for i = 1, . . . , 42, (2)

where σa
i is the allowable stress for the ith block and

σi is the computed maximum stress for all DOF
in the ith block for all time steps. Similarly, the
safety margins based on acceleration values were
computed as:

SMi =
ga

i

gi
− 1, for i = 43, . . . , 55, (3)

where ga
i is the allowable acceleration level for the

ith block and gi is the computed maximum acceler-
ation level for all DOF in the ith block for all time
steps. In both of these SM definitions (Equations 2
and 3), the fractional term is called the safety fac-
tor.

For this problem, σa
i was taken to be the yield

stress for the particular material block and ga
i was

fixed at a constant value for all relevant material
blocks. The nominal EP design had SMmin = −0.48,
which indicates that some part of the EP was being
exposed to twice the allowable stress/acceleration
and was subject to failure.

Since this Phase 1 optimization formulation was
expected to be nonsmooth due to switching among
various components with the lowest safety margin, a
nongradient-based method was selected for the ini-
tial optimization of the EP. This method was the
coordinate pattern search method (CPS) contained
in the Stochastic Global Optimization (SGOPT)
software package (Hart (2001)). To incorporate the
mass constraint, a simple penalty function was used,
although this proved unimportant since the mass
constraint never became active during the CPS it-
erations.

A single Salinas function evaluation required ap-
proximately 40 minutes on 256 processors of ASCI
Red. Using the two-level parallel capabilities in DA-
KOTA, 10 instances of Salinas were executed con-
currently. This completed a full optimization cycle
of the CPS algorithm in one pass since CPS re-
quires 2n function evaluations on each cycle (i.e.,
10 Salinas jobs performed concurrently for n = 5

8

variables). The CPS method was able to improve
the minimum safety margin from the nominal value
of −0.48 to −0.21 with a mass increase of 5.4%, us-
ing a total of 171 function evaluations (Table 2). The
pattern search made good progress until three sepa-
rate margin functions were near the same minimum
value (i.e., were active in defining SMmin) for the
current design. This occurrence adversely affected
the convergence rate of the pattern search method,
as it was difficult to generate a step which simulta-
neously improved all three safety margins from the
restricted set of coordinate search directions.

6.1.2
NPSOL SQP Algorithm

At this stage of the optimization, it was clear that
obtaining a feasible design would be difficult with
the CPS algorithm. Consequently, the problem for-
mulation was changed to one that would be more
amenable to gradient-based methods. In addition,
more design freedom was added by introducing four
new design parameters into the optimization prob-
lem. This new formulation of the optimization prob-
lem was

minimize M
subject to SMi ≥ SMtarget, for i = 1, . . . , 55,

xL ≤ x ≤ xU,
(4)

where SMtarget = 0, and x now contains 9 design
variables. This formulation reduces nonsmoothness
by eliminating the possibility of switching in the
minimum safety margin function, as it allows the
optimizer to track each of the 55 margin functions
independently in the constraints. This does not to-
tally eliminate all sources of nonsmoothness, how-
ever, since switching in space and time of the critical
response within the context of a single margin func-
tion is still possible. Eliminating this final switching
would have required separate constraints for each
degree of freedom for each time step, or 150 million
constraints. This was not practical for the optimiza-
tion algorithms of interest.

The sequential quadratic programming (SQP)
method in NPSOL (Gill et al. (1986)) was config-
ured to use DAKOTA’s parallel central finite differ-
encing. For n = 9 variables, this gives a maximum
concurrency of 2n + 1 = 19 function evaluations.
Given 10 concurrent Salinas executions on ASCI
Red, the 19 jobs could be completed in two passes.
Since NPSOL uses a gradient-based line search pro-
cedure (in user-supplied gradient mode), NPSOL

avoids load imbalances in the line search phase. Start-
ing from the best CPS design, NPSOL was able to
improve the minimum safety margin from −0.21 to
−0.15 and reduce the total mass to 4.4% over nomi-
nal, using a total of 114 function evaluations. Unfor-
tunately, NPSOL was not able to run more than a
few cycles before one of the Salinas jobs hung. This
coincided with the expiration of the special allot-
ment of 2560 ASCI Red processors that had been
dedicated to this study.

6.1.3
DOT MMFD Algorithm

The optimization process was continued using 256
ASCI Red processors, i.e., a single Salinas func-
tion evaluation at a time. The decision was made
to switch from NPSOL’s SQP algorithm to DOT’s
Modified Method of Feasible Directions (MMFD)
(Vanderplaats Research and Development (1995))
algorithm for two reasons. First, the DOT MMFD
algorithm emphasizes finding a feasible point from
the beginning of execution. In contrast, the NPSOL
SQP algorithm is an infeasible method using an aug-
mented Lagrangian merit function that will only
satisfy the constraints at convergence. Second, the
parallel load imbalance of DOT’s value-based line
search is not a hindrance when limited to a single
Salinas function evaluation at a time.

Starting from the NPSOL best design point, the
DOT MMFD algorithm improved the minimum safety
margin value from −0.15 to −0.059, although it did
not find a feasible design point. The mass increased
to 5.3% over nominal. The DOT MMFD algorithm
used 96 Salinas function evaluations before it was
terminated.

6.1.4
Summary of Phase 1

Table 2 shows the progression of the optimization
results for this study. The nongradient-based algo-
rithm (SGOPT CPS) and the two gradient-based
algorithms (NPSOL SQP and DOT MMFD) com-
bined to move the infeasible nominal EP design to
an improved infeasible design. The worst case safety
margin violation had been reduced by approximately
an order of magnitude, at a cost of a 5.3% increase in
the mass of the EP. Figure 5 compares SM contours
for the time step with the largest contrast between
the nominal design and the best Phase 1 design.

At this point in the study, DAKOTA had con-
trolled up to 10 concurrent Salinas jobs, each of

9

Table 2 The sequence of optimization results for the electronics package.

Design Design Mass SM Worst Function Total
Variables (kg) Violations SM Evaluations Processors

Nominal 11.143 8 -0.480
SGOPT CPS 5 11.747 4 -0.214 171 2560
NPSOL SQP 9 11.629 4 -0.147 114 2560
DOT MMFD 9 11.739 4 -0.0587 96 256
AO Verified 7 11.997 0 +0.0603 122 1024

Fig. 5 A comparison of safety margin levels in the original electronics package model (left) and the optimized model
from Phase 1 (right). The brighter colors indicate lower safety margins.

which used 256 processors. This use of up to 2560
processors was successful in compressing the dura-
tion of Phase 1 to four days. Without the use of
parallel computing, equivalent calculations using se-
rial optimization and serial simulation would have
required in excess of 10 years to complete.

Additional information became available which
motivated the next phase of this study. Some Sali-
nas data from earlier parameter study runs were
fully post-processed, and it was discovered that a
subset of the safety margin functions exhibited con-
siderable nonsmoothness (e.g., Figures 6, 7, and 8).
One of these nonsmooth functions was active at the
DOT MMFD solution and was inhibiting further
progress. Thus, the decision was made to switch to
an approximate optimization strategy that used sur-

rogate models to smooth the noisy safety margin
constraint functions.

6.2

Phase 2: Optimization using Approximate
Models

The approximate optimization (AO) strategy used
in this study is a simplified version of the surrogate-
based optimization strategy described in Giunta and
Eldred (2000). This AO strategy is divided into the
following steps: (1) move limit (bounds) selection,
(2) data sampling, (3) surface fitting to produce sur-
rogate models, (4) optimization using the surrogate

10

Scaled Parameter Study Step Size

C
on

st
ra

in
tV

al
ue

0.0 0.2 0.4 0.6 0.8 1.0

-1.8

-1.7

-1.6

-1.5

-1.4

Fig. 6 Nonsmooth variations for constraint 29.

Scaled Parameter Study Step Size

C
on

st
ra

in
tV

al
ue

0.0 0.2 0.4 0.6 0.8 1.0-0.4

-0.3

-0.2

-0.1

0.0

0.1

Fig. 7 Nonsmooth variations for constraint 52.

models, and (5) verification of the predicted optima.
These steps are described below.

6.2.1
Move Limits

The best set of design variables found using DOT
MMFD served as the starting design for the ap-
proximate optimization phase. An analysis of the
previous optimization data showed that two of the
variables did not strongly interact with the opti-
mizer. Thus, these two variables were converted to
constants, each having the optimal value obtained

Scaled Parameter Study Step Size

C
on

st
ra

in
tV

al
ue

0.0 0.2 0.4 0.6 0.8 1.0-0.40

-0.38

-0.36

-0.34

-0.32

-0.30

Fig. 8 Nonsmooth variations for constraint 55.

from the DOT MMFD results. The upper and lower
bounds on each of the remaining seven variables
were reduced to between 18% and 43% of the origi-
nal bounds based on engineering judgment and the
desire to balance the needs of sufficient design free-
dom and sufficient sampling density. In a formal
trust region approach (Giunta and Eldred (2000)),
the same upper and lower bound offsets would have
been used for each variable; however, for a single AO
cycle, custom bounds could be employed. For the re-
mainder of this report, these bounds are referred to
as the move limits of the approximate optimization.

6.2.2
Latin Hypercube Sampling

Next, the Latin hypercube sampling (LHS) method
(McKay et al. (1979)) provided by the DDACE pack-
age (Martinez-Canales (2002)) within DAKOTA was
used to generate 200 independent sample locations
within the move limits. Salinas was used to evalu-
ate as many of these EP designs as possible using
the remainder of the computational budget devoted
to this project. This Salinas/DAKOTA calculation
again used two-level parallel computing, with four
concurrent Salinas jobs each using 256 processors
(1024 total processors).

Unfortunately, only 104 of the LHS design points
were evaluated during the allocated ASCI Red com-
puter time. While the 104 samples did not com-
prise a true LHS data set, this still provided suffi-
cient sampling density to build the surrogate mod-
els. For example, 104 samples is sufficient to over-

11

fit a 7-dimensional quadratic polynomial (having 36
terms) by almost a factor of three. In addition, a sta-
tistical analysis was performed in order to check the
distribution of the 104 samples in the design space.
This analysis did not indicate any correlation or bias
among the samples that would have rendered the
Latin hypercube samples unusable.

6.2.3
Surrogate Model Construction

DAKOTA provides four global surrogate modeling
techniques: (1) kriging spatial interpolation (Cressie
(1991); Giunta and Watson (1998)); (2) quadratic
polynomial regression (QuadPoly) (Myers and Mont-
gomery (1995)); (3) multivariate adaptive regres-
sion splines (MARS) (Friedman (1990)); and (4)
stochastic layered perceptron artificial neural net-
works (ANN) (Zimmerman (1996)).

The kriging, MARS, and ANN methods do not
assume a particular trend in the data. That is, these
three surrogate modeling methods can capture ar-
bitrary variations in a given data set. In contrast,
quadratic polynomial regression assumes that the
data trends can be modeled using second-order func-
tions. Thus, while all of these surrogate models pro-
vide a smooth functional form that is amenable to
gradient-based optimization, the QuadPoly surro-
gate models enforce additional smoothing by nature
of the assumed quadratic form.

6.2.4
Optimization with Surrogate Models

The results from the 104 Salinas jobs provided a
set of mass and safety margin data which was used
by DAKOTA to build 56 separate surrogate mod-
els. These surrogate models approximate the func-
tional relationships between the objective and con-
straint functions (mass and 55 safety margins) and
the seven EP design parameters. The surrogate mod-
els were used in the optimization problem in place
of the Salinas simulations, thereby allowing multiple
approximate optimizations to be performed at very
low cost. The drawback is that the surrogate mod-
els can be inaccurate, particularly if the optimizer
pushes the EP design near the move limit bound-
aries, where the surrogate models begin to extrap-
olate the data trends.

The first surrogate model type used in this study
was quadratic polynomial regression. That is, the

problem defined in Equation 4 was solved using Quad-
Poly surrogate models for mass and each of 55 con-
straints. For the initial approximate optimization
case, the value of SMtarget in Equation 4 was set
to −0.05. Since these surrogate models allow for
very inexpensive evaluations, Monte Carlo sampling
studies were performed in order to identify good
starting points (even though each function is uni-
modal, their intersections can produce multiple con-
strained minima), and then gradient-based optimiza-
tions were performed from these starting points.
The bound constraints for both the Monte Carlo
sampling and the gradient-based optimizations were
identical to the move limit bounds used in the sur-
rogate model construction. Next, SMtarget was in-
creased to 0.0 and the optimization was performed
again. This sequence was continued with SMtarget

values of 0.05, 0.10, and 0.15. This was done to gen-
erate the mass versus safety margin tradeoff plot
shown in Figure 9.

A similar sequence of approximate optimizations
was performed for each of the other three surro-
gate model types: kriging, MARS, and ANN. In
cases where the safety margin targets were not met,
the target was reduced in an iterative fashion until
a final maximized safety margin for the surrogate
model was achieved. The EP mass versus safety
margin tradeoff curves for these surrogate model
types also are shown in Figure 9.

There are several interesting features to note
about the trends in Figure 9. First, the ANN curve
does not follow the same trends as the other three
methods. This prompted an examination of the ANN
algorithm in DAKOTA, and refinements to the ANN
algorithm are planned. Second, the kriging and ANN
tradeoff curves show kinks that result in an increased
slope in mass versus SM. This behavior was traced
to the optimizer bumping up against one or more of
the move limit bounds, with a loss in design freedom
resulting in a steeper mass versus SM trend.

6.2.5
Verification of Approximate Optima

The final step in the approximate optimization pro-
cess was to run Salinas verification analyses for the
EP designs identified in the approximate optimiza-
tions from the previous step. The best agreement
between a predicted EP optimum and its Salinas
verification analysis occurred for one of the designs
predicted using the kriging surrogates. In this case,
the actual mass was predicted very accurately (ac-
tual and predicted both 11.997 kg), and the actual

12

Safety Margin

M
as

s
(k

g)

-0.05 0.00 0.05 0.10 0.15 0.20
11.4

11.6

11.8

12.0

12.2

12.4

DOT MMFD (Phase 1)
AO Verified (Phase2)
Kriging
ANN
MARS
QuadPoly

Mass Upper Limit

Fig. 9 Mass vs. safety margin tradeoff curves generated
using various surrogate model types.

worst case safety margin value was +0.060 (pre-
dicted to be +0.078). The mass and worst case safety
margin data for this AO verified design are listed in
Table 2.

However, not all of the approximate optima were
in such good agreement with the Salinas verifica-
tions. In some cases, the approximate optima had
predicted a positive worst case safety margin, whereas
the Salinas verification analysis yielded a negative
worst case safety margin. This underscores the need
for verification analyses whenever optimization is
performed on surrogate models.

Had sufficient computational resources been avail-
able, this process would have been continued using
a traditional trust-region surrogate-based optimiza-
tion strategy (Giunta and Eldred (2000)) with ad-
ditional rounds of sampling, fitting, optimizing, and
verifying. This would mitigate the verification errors
observed previously when only a single approximate
optimization cycle is performed.

6.2.6

Summary of Phase 2

Phase 2 of the optimization study required 104 Latin
hypercube samples and 18 verification analyses, for
a total of 122 Salinas simulations. The use of up
to 1024 processors to complete these analyses was
successful in compressing the duration of Phase 2
to one additional day. Without the use of parallel
computing, equivalent calculations on a single pro-
cessor would have required an additional 2 years to
complete.

7

Conclusions

This paper presents the results of a high-fidelity
electronics package design study using a massively
parallel structural dynamics code and a multilevel
parallel optimization framework.

From the applications perspective, this study demon-
strates the utility of having a toolbox of algorithms
from which to tailor the optimization procedure as
experience with a particular application increases.
Through the combination of nongradient, gradient,
and approximate optimization methods, the elec-
tronics package design was improved from an in-
feasible design which violated response allowables
by a factor of two to a completely feasible design
with positive design margins, while still remaining
within strict mass targets. In retrospect, the ap-
proximate optimization techniques appeared to be
the most effective in extracting the necessary trends
from nonsmooth simulation results and would likely
have reduced the overall computational expense if
used from the beginning. In addition, these approx-
imate techniques enabled the extraction of a design
tradeoff curve of mass versus safety margin which
proved useful in facilitating the design decision pro-
cess.

From the parallel computing perspective, this
paper validates the multilevel parallelism procedures
in DAKOTA for a large-scale application and demon-
strates the effectiveness of massively parallel com-
puting in reducing the time to solve an actual en-
gineering design problem. During the course of the
EP study, a series of DAKOTA runs employed up to
2560 processors in a combination of coarse-grained
and fine-grained parallel processing. These studies
were completed in five days, where equivalent cal-
culations on a single desktop computer would have
required in excess of 12 years. Clearly, the effective
use of massively parallel computing was a critical
enabler in allowing a study of this magnitude.

While certain aspects of current-generation cus-
tom supercomputers do not yet lend themselves to
routine studies of this type, several directions for
improvement have been identified. In particular, ex-
ploiting tighter couplings between the optimization
and simulation software will streamline process man-
agement and reduce the load on key supercomputer
components. It is expected that advances in opti-
mization and supporting parallel software will be
successful in making high-fidelity studies of this type
a standard component of modeling and simulation
activities in the Department of Energy complex.

13

Acknowledgements The authors would like to express
their thanks to Clay Fulcher for his assistance in for-
mulating the design problem, to Ken Alvin for his as-
sistance with modal sensitivity analysis and parameter
screening, and to Garth Reese and Manoj Bhardwaj
for their assistance with the Salinas simulation code.
In addition, the authors appreciate helpful suggestions
provided by Prof. Raphael Haftka of the University of
Florida in reviewing this manuscript.

References

Biros, G., and Ghattas, O., 2000: Parallel Lagrange-
Newton-Krylov-Schur Methods for PDE-Constrained
Optimization. Part II: The Lagrange-Newton Solver,
and its Application to Optimal Control of Steady
Viscous Flows. Technical Report, Laboratory for Me-
chanics, Algorithms, and Computing, Carnegie Mel-
lon University. (Available online from: http://www-
2.cs.cmu.edu/~oghattas/)

Cressie, N., 1991: Statistics for Spatial Data, John Wiley
and Sons, Inc., New York, pp. 1-26.

Day, D., 1998: A Basic Parallel Sparse Eigensolver
for Structural Dynamics, Sandia Technical Report
SAND98-0410C, Sandia National Laboratories, Albu-
querque, NM.

Eldred, M.S., Giunta, A.A., van Bloemen Waanders,
B.G., Wojtkiewicz, S.F., Jr., Hart, W.E., and Alleva,
M.P., 2002a: DAKOTA, A Multilevel Parallel Object-
Oriented Framework for Design Optimization, Parame-
ter Estimation, Uncertainty Quantification, and Sensi-
tivity Analysis. Version 3.0 Users Manual. Sandia Tech-
nical Report SAND2001-3796, Sandia National Lab-
oratories, Albuquerque, NM. (Available online from:
http://endo.sandia.gov/DAKOTA/software.html)

Eldred, M.S., Giunta, A.A., van Bloemen Waanders,
B.G., Wojtkiewicz, S.F., Jr., Hart, W.E., and Alleva,
M.P., 2002b: DAKOTA, A Multilevel Parallel Object-
Oriented Framework for Design Optimization, Param-
eter Estimation, Uncertainty Quantification, and Sen-
sitivity Analysis. Version 3.0 Reference Manual. San-
dia Technical Report SAND2001-3515, Sandia National
Laboratories, Albuquerque, NM. (Available online from:
http://endo.sandia.gov/DAKOTA/software.html)

Eldred, M.S., Giunta, A.A., van Bloemen Waanders,
B.G., Wojtkiewicz, S.F., Jr., Hart, W.E., and Alleva,
M.P., 2002c: DAKOTA, A Multilevel Parallel Object-
Oriented Framework for Design Optimization, Param-
eter Estimation, Uncertainty Quantification, and Sen-
sitivity Analysis. Version 3.0 Developers Manual. San-
dia Technical Report SAND2001-3514, Sandia National
Laboratories, Albuquerque, NM. (Available online from:
http://endo.sandia.gov/DAKOTA/software.html)

Eldred, M.S., Hart, W.E., Schimel, B.D., and van Bloe-
men Waanders, B.G., 2000: Multilevel Parallelism for

Optimization on MP Computers: Theory and Exper-
iment, paper 2000-4818 in the Proceedings of the 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, Long Beach, CA.

Farhat, C. and Roux, F., 1992: An unconventional do-
main decomposition method for an efficient parallel so-
lution of large-scale finite element systems, SIAM J. Sci.
Statist. Comput., Vol. 13, No. 1, pp. 379-396.

Friedman, J. H., 1990: Multivariate Adaptive Regression
Splines, The Annals of Statistics. (also published as Tech
Report PUB-4960, Stanford Linear Accelerator Center,
1990)

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M.
H., 1986: Users Guide for NPSOL (Version 4.0): A For-
tran Package for Nonlinear Programming, System Op-
timization Laboratory, TR SOL-86-2, Stanford Univer-
sity, Stanford, CA.

Giunta, A.A., and Eldred, M.S., 2000: Implementa-
tion of a Trust Region Model Management Strategy in
the DAKOTA Optimization Toolkit, paper 2000-4935
in Proceedings of the 8th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Opti-
mization, Long Beach, CA.

Giunta, A. A., and Watson, L. T., 1998: A Compar-
ison of Approximation Modeling Techniques: Polyno-
mial Versus Interpolating Models, paper 98-4758 in Pro-
ceedings of the 7th AIAA/USAF/NASA/ISSMO Sym-
posium on Multidisciplinary Analysis and Optimization,
St. Louis, MO, pp. 392-404.

Glass, G., 1993: UNIX for Programmers and Users: A
Complete Guide, Prentice Hall, Englewood Cliffs, NJ.

Greenberg, D.S., Brightwell, R., Fisk, L.A., Mac-
cabe, A.B., and Riesen, R.E., 1997: A System Soft-
ware Architecture for High-End Computing, Proceed-
ings of Supercomputing 97, San Jose, CA. (Avail-
able online from: http://www.supercomp.org/sc97/-
proceedings/TECH/GREENBER/INDEX.HTM)

Hart, W. E., 2001: SGOPT User Manual, Version 2.0,
Sandia Technical Report SAND2001-3789, Sandia Na-
tional Laboratories, Albuquerque, NM. (Available on-
line from: http://www.cs.sandia.gov/SGOPT/)

Heath, M.T., 1997: Scientific Computing: An Introduc-
tory Survey, McGraw-Hill, Boston.

Kernighan, B.W., and Ritchie, D.M., 1988: The C Pro-
gramming Language, 2nd ed., Prentice Hall, Englewood
Cliffs, NJ.

Martinez-Canales, M.L., 2002: DDACE – Dis-
tributed Design and Analysis of Computer Exper-
iments (online document), Sandia National Lab-
oratories, Livermore, CA. (Available online from:
http://csmr.ca.sandia.gov/projects/ddace)

Maschhoff, K.J., and Sorensen, D.C., 1996: PARPACK:
An Efficient Portable Large Scale Eigenvalue Pack-
age for Distributed Memory Parallel Architectures,

14

Applied Parallel Computing in Industrial Problems
and Optimization, Lecture Notes in Computer Science
(eds. J. Wasniewski, J. Dongarra, K. Madsen, and
D. Olesen), Vol. 1184, Springer–Verlag, Berlin.

Mattson, T.G. and Henry, G., 1997: The ASCI
Option Red Supercomputer, Intel Supercom-
puter Users Group, Thirteenth Annual Confer-
ence, Albuquerque, NM. (Available online from:
http://www.cs.sandia.gov/ISUG97/papers/Mattson/-
OVERVIEW.html)

McKay, M. D., Beckman, R. J., and Conover, W. J.,
1979: A Comparison of Three Methods for Selecting Val-
ues of Input Variables in the Analysis of Output from
a Computer Code, Technometrics, Vol. 21, No. 2, pp.
239-245.

Myers R. H., and Montgomery, D. C., 1995: Response
Surface Methodology: Process and Product Optimization
Using Designed Experiments, Wiley, New York, pp. 79-
123.

O’Neal, D., and Murgie, S., 2002: ANSYS Bench-
marking Project: Evaluation of the Distributed Do-
main Solver (online document), National Center for Su-
percomputing Applications, Champaign, IL. (Available
online from: http://www.psc.edu/~oneal/ansys/Article-
DDS Project Benchmarks-ANSYS.pdf).

Reese, G.M., Bhardwaj, M.K., Driessen, B., Alvin, K.F.,
and Day, D., 2000: Salinas - An Implicit Finite Ele-
ment Structural Dynamics Code Developed for Mas-
sively Parallel Platforms, paper 2000-1651 in Proceed-
ings of the 41st AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference,
Atlanta, GA.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and
Dongarra, J., 1996: MPI: The Complete Reference, MIT
Press, Cambridge, MA.

Sobieszczanski-Sobieski, J., Kodiyalam, S., and R.-J.
Yang, 2001: Optimization of Car Body Under Con-
straints of Noise, Vibration, and Harshness (NVH), and
Crash, Structural and Multidisciplinary Optimization,
Springer, Volume 22, Issue 4, pp. 295-306.

Stroustrup, B., 1991: The C++ Programming Language,
2nd ed., Addison-Wesley, New York.

Thimbleby, H., 1993: Computerized Parkinson’s Law,
Computing and Control Engineering Journal, Vol. 4(5),
pp. 197-198.

Tomkins, J.L., 1996: The ASCI Red TOPS Super-
computer (online document), Sandia National Lab-
oratories, Albuquerque, NM. (Available online from:
http://www.sandia.gov/ASCI/Red/RedFacts.htm)

Tuminaro, R.S., Heroux, M.A., Hutchinson,
S.A., and Shadid, J.N., 1999: Official Aztec
User’s Guide: Version 2.1, Sandia Technical Re-
port SAND99-8801J, Sandia National Laborato-
ries, Albuquerque, NM. (Available online from:
http://www.cs.sandia.gov/CRF/Aztec pubs.html)

Vanderplaats Research and Development, Inc., 1995:
DOT Users Manual, Version 4.20, Colorado Springs,
CO.

Venkataraman, S., and Haftka, R.T., 2002: Struc-
tural Optimization: What Has Moore’s Law Done
For Us?, paper 2002-1342 in Proceedings of the 43rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, Denver, CO.

Yang, R.-J., Akkerman, A., Anderson, D. F., Faruque,
O. M., and Gu, L., 2000: Robustness Optimization for
Vehicle Crash Simulations, Computing in Science and
Engineering, IEEE Press, Vol. 6, Issue 2, pp. 8-13.

Zimmerman, D., 1996: Genetic Algorithms for Navigat-
ing Expensive and Complex Design Spaces, Final Re-
search Report prepared for Sandia National Laborato-
ries (technical contact M. Eldred).

